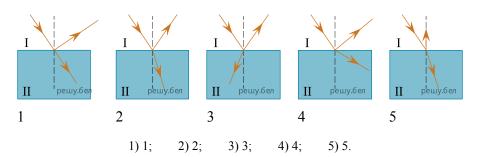
**1.** Расстояние от мнимого изображения действительного предмета, полученного с помощью тонкой собирающей линзы, до ее главной плоскости в  $\alpha=3$  раза больше фокусного расстояния. Линейное (поперечное) увеличение  $\Gamma$  линзы равно:

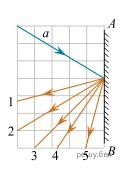
1) 2 2) 3 3) 4 4) 5 5) 6

**2.** Расстояние между предметом и его мнимым изображением, полученным в тонкой линзе, l = 60 см. Если линейное (поперечное) увеличение линзы  $\Gamma = 4.0$ , то фокусное расстояние F линзы равно:

1) 16 см 2) 18 см 3) 24 см 4) 27 см 5) 30 см

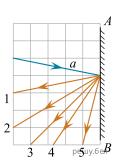

**3.** Предмет находится на расстоянии d=10 см от главной плоскости тонкой линзы. Если изображение предмета мнимое и его линейный размер больше размера предмета в  $\Gamma=3,0$  раза, то фокусное расстояние F линзы равно:

1) 13 cm 2) 15 cm 3) 17 cm 4) 20 cm 5) 23 cm


**4.** Если длина звуковой волны  $\lambda$ = 0,800 м, а её частота  $\nu$  = 415 Гц, то модуль скорости  $\nu$  распространения звуковой волны равен:

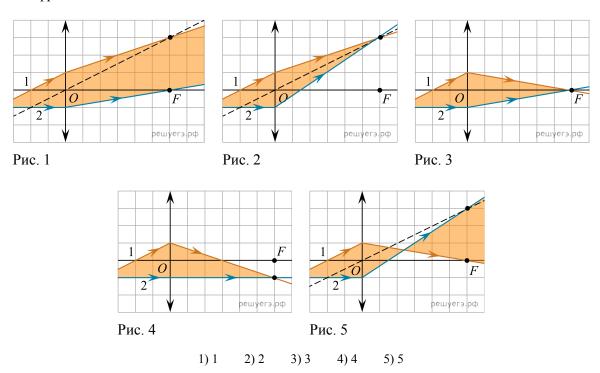
1) 310 m/c 2) 332 m/c 3) 350 m/c 4) 370 m/c 5) 390 m/c

**5.** Ход отражённого и преломлённого световых лучей при отражении и преломлении на границе раздела сред воздух (I) — вода (II) правильно показан на рисунке, обозначенном цифрой:

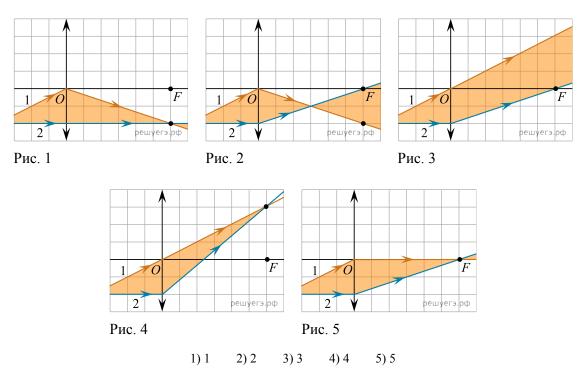



**6.** Световой луч a падает на поверхность зеркала AB. Отражённый от зеркала световой луч обозначен на рисунке цифрой:

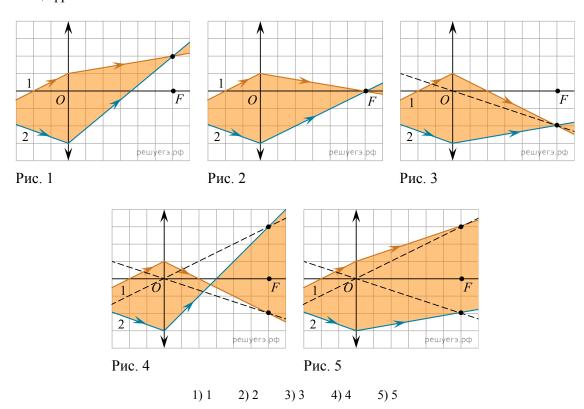



1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

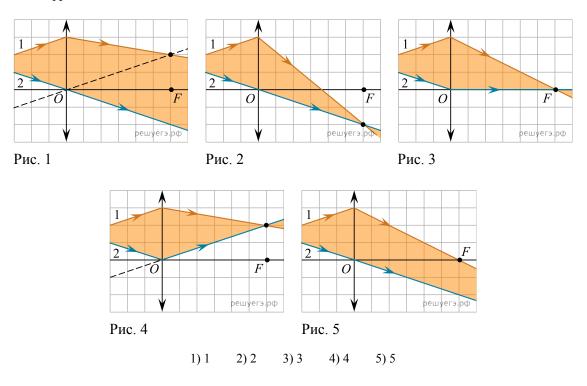
**7.** Световой луч a падает на поверхность плоского зеркала AB. Отражённый от зеркала световой луч обозначен на рисунке цифрой:



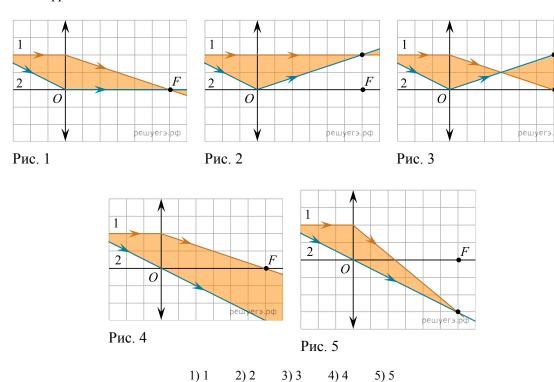

1) 1; 2) 2; 3) 3; 4) 4; 5) 5.


**8.** На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:

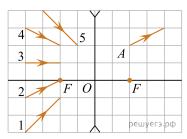



**9.** На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:



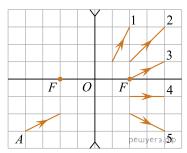

**10.** На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:




**11.** На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:

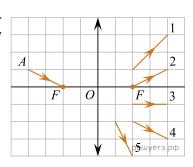


**12.** На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:



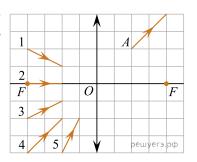

**13.** На рисунке изображён луч света A, прошедший через тонкую рассеивающую линзу с главными фокусами F. Этот же луч, падающий на линзу, обозначен цифрой:




1) 1 2) 2 3) 3 4) 4 5) 5

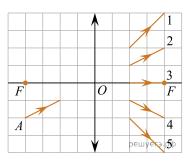
**14.** На рисунке изображён луч света A, падающий на тонкую рассеивающую линзу с главными фокусами F. После прохождения через линзу этот луч будет распространяться в направлении, обозначенном цифрой:




1) 1 2) 2 3) 3 4) 4 5) 5

**15.** На рисунке изображён луч света A, падающий на тонкую собирающую линзу с главными фокусами F. После прохождения через линзу этот луч будет распространяться в направлении, обозначенном цифрой:

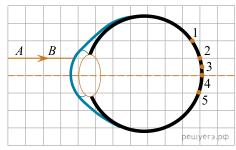



1) 1 2) 2 3) 3 4) 4 5) 5

**16.** На рисунке изображён луч света A, прошедший через тонкую собирающую линзу с главными фокусами F. Этот же луч, падающий на линзу обозначен цифрой:



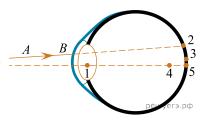
1) 1 2) 2 3) 3 4) 4 5) 5


**17.** На рисунке изображён луч света A, падающий на тонкую собирающую линзу с главными фокусами F. После прохождения через линзу этот луч будет распространяться в направлении, обозначенном цифрой:



1) 1 2) 2 3) 3 4) 4 5) 5

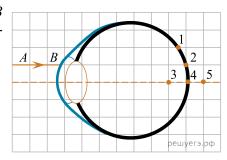
**18.** На рисунке изображен глаз человека. Если луч света AB пройдет через точку, обозначенной цифрой ..., то у человека дефект зрения — близорукость.


Условие уточнено редакцией РЕШУ ЦТ.



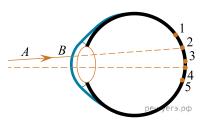
1) 1 2) 2 3) 3 4) 4 5) 5

19. Точечный источник света находится на главной оптической оси глаза на расстоянии наилучшего видения ( $L=25\,$  см) при нормальном зрении. Если луч света AB, идущий от источника, пройдет через точку, обозначенную цифрой ..., то у человека дефект зрения — дальнозоркость.


Условие уточнено редакцией РЕШУ ЦТ.



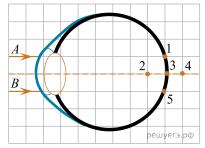
1) 1 2) 2 3) 3 4) 4 5) 5


**20.** На рисунке изображен глаз человека. Если луч света AB пройдет через точку, обозначенной цифрой ..., то у человека дефект зрения — близорукость.

Условие уточнено редакцией РЕШУ ЦТ.



1) 1 2) 2 3) 3 4) 4 5) 5


**21.** Точечный источник света находится на главной оптической оси глаза на расстоянии наилучшего видения ( $L=25\,\mathrm{cm}$ ) при нормальном зрении. Если луч света AB, идущий от источника, пройдет через точку, обозначенную цифрой ..., то у человека дефект зрения — дальнозоркость.



Условие уточнено редакцией РЕШУ ЦТ.

- 1) 1 2) 2 3) 3 4) 4 5) 5
- **22.** На рисунке изображен глаз человека. Если лучи света A и B пройдут через точку, обозначенную цифрой ..., то у человека дефект зрения близорукость.

Условие уточнено редакцией РЕШУ ЦТ.



- 1) 1 2) 2 3) 3 4) 4 5) 5
- **23.** Если угол между световым лучом, падающим на зеркало, и плоскостью зеркала  $\alpha=40^\circ$ , то угол отражения этого луча от зеркала равен:



- 1) 10°; 2) 20°; 3) 30°; 4) 40°; 5) 50°.
- **24.** Если угол между световым лучом, падающим на зеркало, и плоскостью зеркала  $\alpha=60^\circ$ , то угол отражения этого луча от зеркала равен:



- 1) 120°; 2) 80°; 3) 60°; 4) 30°; 5) 10°.
- **25.** На рисунке изображены два зеркала, угол между плоскостями которых  $\beta=105^\circ$ . Если угол падения светового луча АО на первое зеркало  $\alpha=55^\circ$ , то угол отражения этого луча от второго зеркала равен:



Примечание. Падающий луч лежит в плоскости рисунка.

Примечание. Падающий луч лежит в плоскости рисунка.

1)  $25^{\circ}$  2)  $50^{\circ}$  3)  $75^{\circ}$  4)  $90^{\circ}$  5)  $105^{\circ}$ 

1)  $20^{\circ}$  2)  $50^{\circ}$  3)  $75^{\circ}$  4)  $90^{\circ}$  5)  $105^{\circ}$ 

**26.** На рисунке изображены два зеркала, угол между плоскостями которых  $\beta = 75^{\circ}$ . Если угол падения светового луча AO на первое зеркало  $\alpha = 55^{\circ}$ , то угол отражения этого луча от второго зеркала равен: *Примечание*. Падающий луч лежит в плоскости рисунка.



- isiy i siemiii B iisioonoo iii piieyimu.
- **27.** На рисунке изображены два зеркала, угол между плоскостями которых  $\beta = 85^\circ$ . Если угол падения светового луча AO на первое зеркало  $\alpha = 50^\circ$ , то угол отражения этого луча от второго зеркала равен:



1)  $20^{\circ}$  2)  $35^{\circ}$  3)  $50^{\circ}$  4)  $65^{\circ}$  5)  $90^{\circ}$ 

**28.** На рисунке изображены два зеркала, угол между плоскостями которых  $\beta = 75^\circ$ . Если угол падения светового луча AO на первое зеркало  $\alpha = 40^\circ$ , то угол отражения этого луча от второго зеркала равен:



Примечание. Падающий луч лежит в плоскости рисунка.

1)  $35^{\circ}$  2)  $50^{\circ}$  3)  $75^{\circ}$  4)  $90^{\circ}$  5)  $105^{\circ}$ 

**29.** На рисунке изображены два зеркала, угол между плоскостями которых  $\beta = 95^\circ$ . Если угол падения светового луча AO на первое зеркало  $\alpha = 55^\circ$ , то угол отражения этого луча от второго зеркала равен:



Примечание. Падающий луч лежит в плоскости рисунка.

1) 25° 2) 40° 3) 75° 4) 90° 5) 105°

**30.** На рисунке изображены два зеркала, угол между плоскостями которых  $\beta = 75^\circ$ . Если угол падения светового луча AO на первое зеркало  $\alpha = 40^\circ$ , то угол отражения этого луча от второго зеркала равен:



Примечание. Падающий луч лежит в плоскости рисунка.

1)  $35^{\circ}$  2)  $50^{\circ}$  3)  $75^{\circ}$  4)  $90^{\circ}$  5)  $105^{\circ}$ 

**31.** Точечный источник света находится на расстоянии  $l_1=40$  см от плоского зеркала. Если расстояние между источником и его изображением в зеркале увеличилось на  $\Delta L=10$  см, то расстояние  $l_2$  между источником света и зеркалом стало равным:

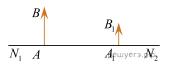


1) 90 см 2) 70 см 3) 60 см 4) 50 см 5) 45 см

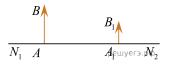
**32.** Расстояние между точечным источником света и его изображением в плоском зеркале  $L_1=50$  см. Если расстояние между зеркалом и источником уменьшится на  $\Delta l=10$  см, то расстояние  $L_2$  между источником света и его новым изображением станет равным:



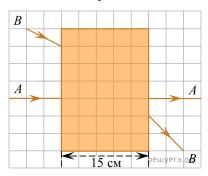
1) 45 cm 2) 40 cm 3) 30 cm 4) 20 cm 5) 10 cm


33. Точечный источник света находится на расстоянии  $l_1=60$  см от плоского зеркала. Если расстояние между источником и его изображением в зеркале уменьшится на  $|\Delta L|=20$  см, то расстояние  $l_2$  между источником света и зеркалом стало равным:

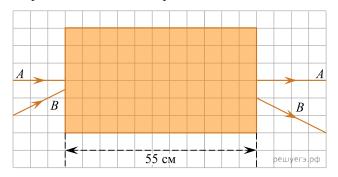



1) 50 cm 2) 40 cm 3) 20 cm 4) 10 cm 5) 5 cm

- **34.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,73 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность  $\alpha=60^{\circ}$ , то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- **35.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H = 1,8 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность  $\alpha = 45^{\circ}$ , то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- **36.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,9 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность  $\alpha=45^{\circ}$ , то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.


- **37.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H = 2,0 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность  $\alpha = 45^{\circ}$ , то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- **38.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H = 1,5 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность  $\alpha = 60^{\circ}$ , то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- **39.** Короткий световой импульс, испущенный лазерным дальномером, отразился от объекта и был зарегистрирован этим же дальномером через промежуток времени  $\Delta t = 0,50$  мкс после испускания. Расстояние s от дальномера до объекта равно ... **м**.
- **40.** Короткий световой импульс, испущенный лазерным дальномером, отразился от объекта и был зарегистрирован этим же дальномером через промежуток времени  $\Delta t = 0,760$  мкс после испускания. Расстояние s от дальномера до объекта равно ... **м**.
- **41.** Стрелка AB высотой H=4,0 см и её изображение  $A_1B_1$  высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси  $N_1N_2$  линзы (см. рис.). Если расстояние между стрелкой и её изображением  $AA_1=16$  см, то модуль фокусного расстояния |F| линзы равен ... см.

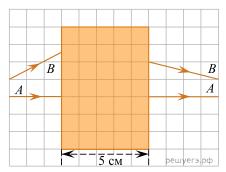



**42.** Стрелка AB высотой H=3.0 см и её изображение  $A_1B_1$  высотой h=2.0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси  $N_1N_2$  линзы (см. рис.). Если расстояние между стрелкой и её изображением  $AA_1=7.0$  см, то модуль фокусного расстояния |F| линзы равен ... см.



**43.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

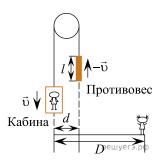



**44.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.

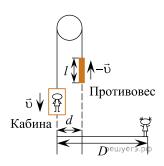


**45.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.




**46.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.



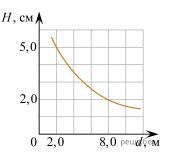

**47.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B — так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.



**48.** Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=12 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=3,1 м, движущегося на расстоянии d=2,6 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени  $\Delta t=2,0$  с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите в сантиметрах в секунду.

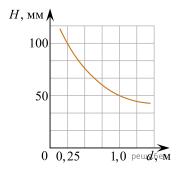


**49.** Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени  $\Delta t=3,0$  с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

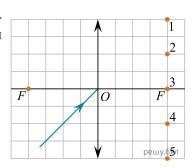



**50.** Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом  $\alpha$ , а продолжение преломлённого луча пересекает эту ось под углом  $\beta$ . Если отношение  $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2}$ , то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.

51.

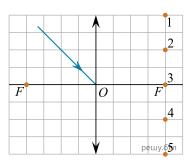

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

**Примечание.** Карандаш расположен перпендикулярно главной оптической оси линзы.




**52.** График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Высота h карандаша равна ... см.

**Примечание.** Карандаш расположен перпендикулярно главной оптической оси линзы.




**53.** На рисунке изображён луч света, падающий на тонкую собирающую линзу с главным фокусом F. После преломления в линзе луч пройдёт через точку, обозначенную цифрой:



1) 1 2) 2 3) 3 4) 4 5) 5

**54.** На рисунке изображён луч света, падающий на тонкую собирающую линзу с главным фокусом F. После преломления в линзе луч пройдёт через точку, обозначенную цифрой:



1) 1 2) 2 3) 3 4) 4 5) 5

**55.** Если предмет находится перед плоским зеркалом на расстоянии 10 см от него, то расстояние между предметом и его изображением в зеркале равно:

- 1) 5,0 см
- 2) 10 см
- 3) 20 см
- 4) 30 cm 5) 40 cm

**56.** Если предмет находится перед плоским зеркалом на расстоянии 14 см от него, то расстояние между предметом и его изображением в зеркале равно:

- 1) 56 см
- 2) 28 см
- 3) 21 см
- 4) 14 см
- 5) 7 см